主題一:
Metasurface lenses
現今,超材料這個主題已經被廣泛研究,其在諸多領域例如,光學,光子學,天線,感測,影像和光譜學等方面均具有很高的潛力。而由二維的週期性金屬貼片構成的超穎介面透鏡已曾被提出。超穎介面除了可以合成出多種於自然界中較難取得的材質特之外,相較於傳統的透鏡,此種實現的方法可以達到降低成本,節省空間效益與輕量化的目的。
本文將倫柏格透鏡應用於表面波天線。然而,在基礎理論的分析當中,大部分的問現都沒有提及關於波的傳遞方向之於週期性結構的色散關係市的探討。因此本文將提出另一種週期性的排列方式以合成倫伯格透鏡。首先,將波傳遞的方向考量帶進色散關係式加以分析。接著,透過比較兩種週期性排列的透進來驗證前面所提出的理論。除此之外,利用孔徑天線的特性定義出此天線的孔徑,並且將其表現透過各種效率的計算以達到特徵與量化的目的。除此之外,於文末將會提出一種新的合成方式改良作為表面波天線的表現。
[1] J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P.Hibbins, “Thin metamaterial Luneburg lens for surface waves” Electromagnetic andAcoustic Materials Group, Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom, March 2013. (
Link)
[2] L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano. Lett. 5, 1399–1402 (2005). (
Link)
[3] O. Quevedo-Teruel, M. Ebrahimpouri, M. Kehn, “Ultra Wide Band Metasurface Lenses Based on Off-Shifted Opposite Layers,” IEEE Antennas Wireless Propag.Lett., vol. 15, pp. 484-487, 2016. (
Link)
[4] S. Maci, G. Minatti, M. Casaletti, and Marko Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE antennas and wireless propagation letters, vol. 10, 2011. (
Link)
[5] M. Casaletti, F. Caminita, and S. Maci, “A Luneburg lens designed by using a variable artificial surface,” in Proc. IEEE Antennas Propag. Society Int. Symp. (APSURSI), Jul. 11–17, 2010, pp. 1–4. (
Link)
[6] L. Xue and V. F. Fusco, “Printed holey plate Luneburg lens,” Microw. Opt. Technol. Lett., vol. 50, pp. 378–380, Dec. 2007. (
Link)
主題二:
Holographic leaky-wave antennas
全息漏波天線已經發展幾年的時間,這是一種透過全息理論設計出的指向性漏波天線,天線平面是由 PCB 板以及表面的次波長金屬片所組成。當我們饋入一個已知的表面波,天線就會輻射一個筆型波束在我們所期望的角度,如果改變表面金屬片的排列,波束的輻射角度也會因此變化,根據這種特性,我們想更近一步發展波束轉向的技術,並利用機械式如旋轉的結構而非主動式電路來達成。在這篇論文中,天線平面被分割成好幾個部分,每個部份擁有各自的全息表面,然後利用金屬罩覆蓋住不需要的部分,只有露出來的部分天線能夠正常輻射,藉由旋轉金屬罩來調整能夠輻射的部分,輻射的角度就會因此改變以達到波束轉向的效果。
[1] D. Sievenpiper, J. Colburn, B. Fong, J. Ottusch, and J. Visher, “Holographic artificial impedance surfaces for conformal antennas,” presented at the IEEE Antennas and Propagation Symposium Digest, Washington DC, Jul. 5, 2005. (
Link)
[2] Dan Sievenpiper, James Schaffner, Robert Loo, Gregory Tangonan, Samuel Ontiveros, and Rick Harold, “A Tunable Impedance Surface Performing as a Reconfigurable Beam Steering Reflector," IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 3, MARCH 2002. (
Link)
[3] An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. (
Link)
[4] D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a
forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2059–2074, Nov. 1999. (
Link)
[5] Sivaseetharaman Pandi, “Holographic Metasurface Leaky Wave Antennas”, A Dissertation Presented in Partial Fullment of the Requirements for the Degree Doctor of Philosophy. (
Link)
[6] W. Kock, “Microwave holography,” Microwaves, vol. 7, no. 11, pp. 46–54, Nov. 1968. (
Link)
[7] Christian Rusch, “Holographic Antennas”, Handbook of Antenna Technologies, Springer Science + Business Media Singapore 2015. (
Link)
[8] P. Checcacci, V. Russo, and A. Scheggi, “Holographic antennas,” IEEE Trans. Antennas Propag., vol. 18, no. 6, pp. 811–813, Nov. 1970. (
Link)
[9] Bryan H. Fong, Joseph S. Colburn, John J. Ottusch, John L. Visher, and Daniel F. Sievenpiper, “Scalar and Tensor Holographic Artificial Impedance Surfaces," IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 10, OCTOBER 2010. (
Link)
[10] Ming Yao and Jia Lin Li, “Beam reconfigurable holographic artificial impedance surface at terahertz band”, Journal of Physics D: Applied Physics, Published 6 February 2019. (
Link)
[11] S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 2nd ed. New York: Wiley, 1984.
主題三:
Analysis of grated/corrugated structures by asymptotic boundary conditions
經典矢量勢分析的方法以及漸近條帶邊界條件(ASBC)用於處理包裹在芯介電圓柱棒上的導電條帶光柵介電管。憑藉週期性紋理表面,該結構能夠表現出促進強表面場定位和波傳播的等離子體行為,從而將其自身作為圓柱形表面波波導或天線。它還可以配置為表現出電磁帶隙 (EBG) 特性,從而產生所謂的圓柱形 EBG 結構。與芯棒導電的典型對應物相反,芯電介質在本文中被證明對於實現寬總帶隙至關重要,其中既不存在慢表面波也不存在快空間波,這是導電芯棒版本無法實現的,只能提供表面波帶隙,就像文獻中許多其他人一樣也忽略了對快空間波的抑制。 通過同軸連接各種這樣的桿結構,每個桿結構都有自己獨特的總帶隙、多頻率、多功能圓柱形天線,即使在同時操作的情況下也可以減輕帶間干擾,當任何一個桿的通帶(其中 它的工作頻率位於)落在所有其他的總帶隙內,如本文所調查的。 還對製造的原型進行了測量,得出的實驗結果與理論預測非常吻合。
[1] S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, ‘‘Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,’’ Phys. Rev. Lett., vol. 97, pp. 176805-1–176805-4, Oct. 2006. (
Link)
[2] Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C.-Y. Wang, ‘‘Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,’’ Opt. Exp., vol. 14, no. 26, pp. 13021–13029, Dec. 2006. (
Link)
[3] G. K. Palikaras, A. P. Feresidis, and J. C. Vardaxoglou, ‘‘Cylindrical electromagnetic bandgap structures for directive base station antennas,’’ IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 87–89, 2004. (
Link)
[4] G. K. Palikaras, A. P. Feresidis, and J. C. Vardaxoglou, ‘‘Cylindrical EBG surfaces for omni-directional wireless LAN antennas,’’ in Proc. IEEE Antennas Propag. Soc. Int. Symp., Washington, DC, USA, Jul. 2005, pp. 339–342. (
Link)